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Abstract

We continue our study [S. Smale, D.X. Zhou, Shannon sampling and function reconstruction from point
Bull. Amer. Math. Soc. 41 (2004) 279–305] of Shannon sampling and function reconstruction. In this pap
error analysis is improved. Then we show how our approach can be applied to learning theory: a functional
framework is presented; dimension independent probability estimates are given not only for the error inL2

spaces, but also for the error in the reproducing kernel Hilbert space where the learning algorithm is per
Covering number arguments are replaced by estimates of integral operators.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

This paper considers regularization schemes associated with the least square loss and HilbertH
of continuous functions. Our target is to provide a unified approach for two topics: interpolation t
or more generally, function reconstruction in Shannon sampling theory withH being a space of band
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ly the
func-

ial
p-
limited functions or functions with certain decay; and regression problem in learning theory withH being
a reproducing kernel Hilbert spaceHK .

First, we improve the probability estimates in [12] with a simplified development. Then we app
technique for function reconstruction to learning theory. In particular, we show that a regression
tion fρ can be approximated by a regularization schemefz,λ in HK . Dimension independent exponent
probability estimates are given for the error‖fz,λ − fρ‖K . Our error bounds provide clues to the asym
totic choice of the regularization parameterγ or λ.

2. Sampling operator

Let H be a Hilbert space of continuous functions on a complete metric spaceX and the inclusion
J :H → C(X) is bounded with‖J‖ < ∞.

Then for eachx ∈ X, the point evaluation functionalf → f (x) is bounded onH with norm at most
‖J‖. Hence there exists an elementEx ∈H with ‖Ex‖H � ‖J‖ such that

f (x) = 〈f,Ex〉H, ∀f ∈ H. (2.1)

Let x̄ be a discrete subset ofX. Define the sampling operatorSx̄ :H → �2(x̄) by

Sx̄(f ) = (
f (x)

)
x∈x̄

.

We shall always assume thatSx̄ is bounded. This holds naturally whenx̄ is finite.
DenoteST

x̄ as the adjoint ofSx̄ . For eachc ∈ �2(x̄), there holds

〈
f,ST

x̄ c
〉
H = 〈Sx̄f, c〉�2(x̄) =

∑
x∈x̄

cxf (x) =
〈
f,

∑
x∈x̄

cxEx

〉
H

, ∀f ∈H.

It follows that

ST
x̄ c =

∑
x∈x̄

cxEx, ∀c ∈ �2(x̄).

3. Algorithm

To allow noise, we make the following assumption.

Assumption. The sampled valuesy = (yx)x∈x̄ have the form for somef ∗ ∈H:

For eachx ∈ x̄, yx = f ∗(x) + ηx , whereηx is independently drawn fromρx. (3.1)

Here for eachx ∈ X, ρx is a probability measure with zero mean, and its varianceσ 2
x satisfiesσ 2 :=∑

x∈x̄ σ 2
x < ∞.

Note that
∑

x∈x̄ (f
∗(x))2 = ‖Sx̄f

∗‖2
�2(x̄)

� ‖Sx̄‖2‖f ∗‖2
H < ∞.

The Markov inequality for a nonnegative random variableξ asserts that

Prob

{
ξ � E(ξ)

}
� 1− δ, for all 0< δ < 1. (3.2)
δ



S. Smale, D.-X. Zhou / Appl. Comput. Harmon. Anal. 19 (2005) 285–302 287

y

ll

on
m 5
It tells us that for everyε > 0,

Prob
{∥∥{ηx}

∥∥2
�2(x̄)

> ε
}

� E
(∥∥{ηx}

∥∥2
�2(x̄)

)/
ε = σ 2

ε
.

By takingε → ∞, we see that{ηx} ∈ �2(x̄) and hencey ∈ �2(x̄) in probability.
Let γ � 0. With the samplez := (x, yx)x∈x̄ , consider the minimization problem

Function reconstruction f̃ := arg min
f ∈H

{∑
x∈x̄

(
f (x) − yx

)2 + γ ‖f ‖2
H

}
. (3.3)

Theorem 1. If ST
x̄ Sx̄ + γ I is invertible, thenf̃ exists, is unique and

f̃ = Ly, L := (
ST

x̄ Sx̄ + γ I
)−1

ST
x̄ .

Proof. Denote

Ez(f ) :=
∑
x∈x̄

(
f (x) − yx

)2
.

Since
∑

x∈x̄ (f (x))2 = ‖Sx̄f ‖2
�2(x̄)

= 〈ST
x̄ Sx̄f, f 〉H, we know that forf ∈ H,

Ez(f ) + γ ‖f ‖2
H = 〈(

ST
x̄ Sx̄ + γ I

)
f,f

〉
H − 2

〈
ST

x̄ y, f
〉
H + ‖y‖2

�2(x̄)
.

Taking the functional derivative [10] forf ∈H, we see that any minimizer̃f of (3.3) satisfies(
ST

x̄ Sx̄ + γ I
)
f̃ = ST

x̄ y.

This proves Theorem 1.�
Thus (3.3) with the invertibility of the operatorST

x̄ Sx̄ + γ I becomes algorithmic. The invertibilit
condition is valid for rich data.

Definition 1. We say that̄x providesrich data(with respect toH) if

λx̄ := inf
f ∈H

‖Sx̄f ‖�2(x̄)/‖f ‖H (3.4)

is positive. It providespoor dataif λx̄ = 0.

The problem of function reconstruction here is to estimate the error‖f̃ −f ∗‖H. In this paper we sha
show in Corollary 2 below that in the rich data case, withγ = 0, for every 0< δ < 1, with probability
1− δ, there holds

‖f̃ − f ∗‖H � ‖J‖√σ 2/δ

λ2
x̄

. (3.5)

This estimate does not require the boundedness of the noiseρx . Moreover, under the stronger conditi
(see [12]) that|ηx | � M for eachx ∈ x̄, we shall use the McDiarmid inequality and prove in Theore
below that for every 0< δ < 1, with probability 1− δ,

‖f̃ − f ∗‖H � ‖J‖
2

(√
8σ 2 log

1

δ
+ 4

3
M log

1

δ

)
. (3.6)
λx̄
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[12] is
David
The two estimates, (3.5) and (3.6), improve the bounds in [12]. It turns out that Theorem 4 in
a consequence of the remark which follows it about the Markov inequality. Conversations with
McAllester were important to clarify this point.

4. Sample error

Define

fx̄,γ := L(Sx̄f
∗). (4.1)

The sample error takes the form‖f̃ − fx̄,γ ‖2
H.

Theorem 2. If ST
x̄ Sx̄ +γ I is invertible and Assumption holds, for every0< δ < 1, with probability1− δ,

there holds

‖f̃ − fx̄,γ ‖2
H � ‖(ST

x̄ Sx̄ + γ I)−1‖2‖J‖2σ 2

δ
.

If |ηx | � M for someM � 0 and eachx ∈ x̄, then for everyε > 0, we have

Proby
{‖f̃ − fx̄,γ ‖2

H � ‖L‖2σ 2(1+ ε)
}

� 1− exp

{
− εσ 2

2M2
log(1+ ε)

}
.

Proof. Write ‖f̃ − fx̄,γ ‖2
H as∥∥L(y − Sx̄f

∗)
∥∥2
H �

∥∥(
ST

x̄ Sx̄ + γ I
)−1∥∥2∥∥ST

x̄ (y − Sx̄f
∗)

∥∥2
H.

But

ST
x̄ (y − Sx̄f

∗) =
∑
x∈x̄

(
yx − f ∗(x)

)
Ex.

Hence∥∥ST
x̄ (y − Sx̄f

∗)
∥∥2
H =

∑
x∈x̄

∑
x′∈x̄

(
yx − f ∗(x)

)(
yx′ − f ∗(x ′)

)〈Ex,Ex′ 〉H.

By the independence of the samples andE(yx − f ∗(x)) = 0, E{(yx − f ∗(x))2} = σ 2
x , its expected

value is

E
(∥∥ST

x̄ (y − Sx̄f
∗)

∥∥2
H

) =
∑
x∈x̄

σ 2
x 〈Ex,Ex〉H.

Now 〈Ex,Ex〉H = ‖Ex‖2
H � ‖J‖2. So the expected value of the sample error can be bounded as

E
(‖f̃ − fx̄,γ ‖2

H
)
�

∥∥(
ST

x̄ Sx̄ + γ I
)−1∥∥2‖J‖2σ 2.

The first desired probability estimate follows from the Markov inequality (3.2).
For the second estimate, we apply Theorem 3 from [12] (withw ≡ 1) to the random variables{η2

x}x∈x̄ .
Assumption tells us thatE(ηx) = 0, which impliesE(η2

x) = σ 2
x . So we see that for everyε > 0,

Proby

{∑{
η2

x − σ 2
x

}
> ε

}
� exp

{
− ε

2M2
log

(
1+ M2ε∑

x∈x̄ σ 2(η2
x)

)}
.

x∈x̄
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s.
Here we have used the condition|ηx | � M , which implies |η2
x − σ 2

x | � M2. Also,
∑

x∈x̄ σ 2(η2
x) �∑

x∈x̄ E(η4
x) � M2σ 2 < ∞. The desired bound then follows from the inequality‖f̃ − fx̄,γ ‖2

H �
‖L‖2‖{ηx}‖2

�2(x̄)
after replacingε by εσ 2. �

Remark. Whenx̄ containsm elements, we can takeσ 2 � mM2 < ∞.

Proposition 1. The sampling operatorSx̄ satisfies

∥∥(
ST

x̄ Sx̄ + γ I
)−1∥∥ � 1

λ2
x̄ + γ

.

For the operatorL, we have

‖L‖ � ‖Sx̄‖
λ2

x̄ + γ
.

Proof. Let v ∈H andu = (ST
x̄ Sx̄ + γ I)−1v. Then(

ST
x̄ Sx̄ + γ I

)
u = v.

Taking inner products on both sides withu, we have

〈Sx̄u, Sx̄u〉�2(x̄) + γ ‖u‖2
H = 〈v,u〉H � ‖v‖H‖u‖H.

The definition of the richnessλx̄ tells us that

〈Sx̄u, Sx̄u〉�2(x̄) = ‖Sx̄u‖2
�2(x̄)

� λ2
x̄‖u‖2

H.

It follows that(
λ2

x̄ + γ
)‖u‖2

H � ‖v‖H‖u‖H.

Hence‖u‖H � (λ2
x̄ + γ )−1‖v‖H. This is true for everyv ∈ H. So the bound for the first operator follow

The second inequality is trivial.�
Corollary 1. If ST

x̄ Sx̄ + γ I is invertible and Assumption holds, then for every0< δ < 1, with probability
1− δ, there holds

‖f̃ − fx̄,γ ‖2
H � ‖J‖2σ 2

(λ2
x̄ + γ )2δ

.

5. Integration error

Recall thatfx̄,γ = L(Sx̄f
∗) = (ST

x̄ Sx̄ + γ I)−1ST
x̄ Sx̄f

∗. It can be written as

fx̄,γ = (
ST

x̄ Sx̄ + γ I
)−1(

ST
x̄ Sx̄ + γ I − γ I

)
f ∗ = f ∗ − γ

(
ST

x̄ Sx̄ + γ I
)−1

f ∗. (5.1)

This in connection with Proposition 1 proves the following proposition.
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Proposition 2. SupposeST
x̄ Sx̄ + γ I is invertible. We have

‖fx̄,γ − f ∗‖H � γ ‖f ∗‖H
λ2

x̄ + γ
.

In particular, in the rich data case, we may takeγ = 0 and obtainfx̄,γ = f ∗. Hence the following
estimate is a consequence of Corollary 1.

Corollary 2. If λx̄ > 0 andγ = 0, for every0 < δ < 1, with probability1− δ, there holds

‖f̃ − f ∗‖H � ‖J‖√σ 2/δ

λ2
x̄

.

For the poor data caseλx̄ = 0, we need to estimateγ (ST
x̄ Sx̄ + γ I)−1f ∗ according to (5.1).

Recall that for a positive self-adjoint linear operatorL on a Hilbert spaceH, there holds∥∥γ (L+ γ I)−1f
∥∥
H = ∥∥γ (L+ γ I)−1(f −Lg +Lg)

∥∥
H � ‖f −Lg‖H + γ ‖g‖H

for everyg ∈H. Taking the infimum overg ∈ H, we have∥∥γ (L+ γ I)−1f
∥∥
H �K(f, γ ) := inf

g∈H
{‖f −Lg‖H + γ ‖g‖H

}
, ∀f ∈H, γ > 0. (5.2)

This is theK-functional betweenH and the range ofL. Thus, whenf is in the closure of the range o
L in H, we have limγ→0 ‖γ (L + γ I)−1f ‖H = 0. If f is in the range ofLr for some 0< r � 1, then
‖γ (L+ γ I)−1f ‖H � 2‖L−rf ‖Hγ r . See, e.g., [11].

Using (5.2) for the operatorL = ST
x̄ Sx̄ , we can use aK-functional betweenH and the range ofST

x̄ Sx̄

to get the convergence rate.

Proposition 3. Definef ∗
γ as

f ∗
γ := arg inf

g∈H
{∥∥f ∗ − ST

x̄ Sx̄g
∥∥
H + γ ‖g‖H

}
, γ > 0.

There holds

‖fx̄,γ − f ∗‖H �
∥∥f ∗ − ST

x̄ Sx̄f
∗
γ

∥∥
H + γ ‖f ∗

γ ‖H.

In particular, if f ∗ lies in the closure of the range ofST
x̄ Sx̄ , thenlimγ→0 ‖fx̄,γ −f ∗‖H = 0. If f ∗ is in the

range of(ST
x̄ Sx̄)

r for some0< r � 1, then‖fx̄,γ − f ∗‖H � 2‖(ST
x̄ Sx̄)

−rf ∗‖Hγ r .

Compared with Corollary 2, Proposition 3 in connection with Corollary 1 gives an error estima
the poor data case whenf ∗ is in the range of(ST

x̄ Sx̄)
r . For every 0< δ < 1, with probability 1− δ, there

holds

‖f̃ − f ∗‖H � ‖J‖√σ 2

γ
√

δ
+ 2

∥∥(
ST

x̄ Sx̄

)−r
f ∗∥∥

Hγ r .
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6. More general setting of function reconstruction

From (2.1) we see that the boundedness ofSx̄ is equivalent to the Bessel sequence property of
family {Ex}x∈x̄ of elements inH, i.e., there is a positive constantB such that∑

x∈x̄

∣∣〈f,Ex〉H
∣∣2 � B‖f ‖2

H, ∀f ∈ H. (6.1)

Moreover,x̄ provides rich data if and only if this family forms aframeof H, i.e., there are two positiv
constantsA � B called frame bounds such that

A‖f ‖2
H �

∑
x∈x̄

∣∣〈f,Ex〉H
∣∣2 � B‖f ‖2

H, ∀f ∈H.

In this case, the operatorST
x̄ Sx̄ is called theframe operator. Its inverse is usually difficult to compute, b

it satisfies the reconstruction property:

f =
∑
x∈x̄

〈
f,

(
ST

x̄ Sx̄

)−1
Ex

〉
HEx, ∀f ∈H.

For these basic facts about frames, see [17].
The function reconstruction algorithm studied in the previous sections can be generalized to a

with a Bessel sequence{Ex}x∈x̄ in H satisfying (6.1). Here the point evaluation (2.1) is replaced by
functional〈f,Ex〉H and the minimization becomes

f̃ := arg min
f ∈H

{∑
x∈x̄

(〈f,Ex〉H − yx

)2 + γ ‖f ‖2
H

}
. (6.2)

The sample values in Assumption now take the formyx = 〈f ∗,Ex〉H + ηx . If we replace the samplin
operatorSx̄ by the operator fromH to �2(x̄) mappingf to (〈f,Ex〉H)x∈x̄ , then (6.2) can be analyzed
the same way as above and all the error bounds hold true. Concrete examples for this generalize
can be found in the literature of image processing, inverse problems [6] and sampling theory
Fredholm integral equation of the first kind, the moment problem, and the function reconstructio
weighted-averages.

One can even consider more general function reconstruction schemes: replacing the least-sq
in (6.2) by some other loss function and‖ · ‖H by some other norm. For example, if we choose Vapn
ε-insensitive loss:|t |ε := max{|t |− ε,0}, and a function spacẽH included inH (such as a Sobolev spa
in L2), then a function reconstruction scheme becomes

f̃ := arg min
f ∈H̃

{∑
x∈x̄

∣∣〈f,Ex〉H − yx

∣∣
ε
+ γ ‖f ‖2

H̃

}
. (6.3)

When {Ex}x∈x̄ is a Bessel sequence inH but not a frame (corresponding to the poor data case)
scheme (6.3) can be solved by a quadratic convex optimization problem but not by a linear ope
general. We do not expect to analyze this scheme in a linear functional analysis framework. Th
would involve not only the variance, the Bessel sequence, and the regularization parameter, but
choice of the parameterε. It would be interesting to derive error bounds for the function reconstruc
scheme (6.3).
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The rich data requirement is reasonable for function reconstruction such as sampling theory [
the other hand, in learning theory, the situation of poor data or poor frame bounds (A → 0 as the numbe
of points in x̄ increases) often happens. For such situations, we takex̄ to be random samples of som
probability distribution.

7. Learning theory

From now on we assume thatX is compact. Letρ be a probability measure onZ := X×Y with Y = R.
The error for a functionf :X → Y is given byE(f ) = ∫

Z
(f (x) − y)2 dρ. The function minimizing the

error is called theregression functionand is given by

fρ(x) =
∫
Y

y dρ(y|x), x ∈ X.

Hereρ(y|x) is the conditional distribution atx induced byρ. The marginal distribution onX is denoted
asρX. We assume thatfρ ∈ L2

ρX
. Denote‖f ‖ρ = ‖f ‖L2

ρX
andσ 2(ρ) as the variance ofρ.

The purpose of the regression problem in learning theory [3,7,9,14,15] is to find good approxim
of the regression function from a set of random samplesz = {(xi, yi)}mi=1 drawn independently accordin
to ρ. This purpose is achieved in Corollaries 3, 4, and 5 below. Here we consider kernel based l
algorithms.

Let K :X × X → R be continuous, symmetric and positive semidefinite, i.e., for any finite s
distinct points{x1, . . . , x�} ⊂ X, the matrix(K(xi, xj ))

�
i,j=1 is positive semidefinite. Such a kernel

called aMercer kernel.
The reproducing kernel Hilbert space(RKHS)HK associated with the kernelK is defined to be the

closure [2] of the linear span of the set of functions{Kx = K(x, ·): x ∈ X} with the inner product〈· , ·〉K
satisfying〈Kx,Ky〉K = K(x,y). The reproducing property takes the form

〈Kx,f 〉K = f (x), ∀x ∈ X, f ∈ HK. (7.1)

The optimization problem we study here is a regularized one with someλ > 0

Learning scheme fz,λ := arg min
f ∈HK

{
1

m

m∑
i=1

(
f (xi) − yi

)2 + λ‖f ‖2
K

}
. (7.2)

We shall investigate howfz,λ approximatesfρ and how the choice of the regularization parame
λ = λ(m) leads to (optimal) convergence rates. The convergence inL2

ρX
has been considered in [4,

18]. The purpose of this section is to present a simple functional analysis approach, and to pro
convergence rates in the spaceHK as well as sharper, dimension independent probability estimat
L2

ρX
.

The reproducing kernel property (7.1) tells us that the minimizer of (7.2) lies inHK,z := span{Kxi
}mi=1

by projection onto this subspace. Thus, the optimization problem can be written in the same way a
To see this, we denotēx = {xi}m ,ρx = ρ(·|x) − fρ(x) for x ∈ X. ThenEx = Kx for x ∈ x̄. Assumption
i=1
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)

3),

e

holds, and (3.1) is true except thatf ∗ ∈H is replaced byf ∗ = fρ . Denotey = (yi)
m
i=1. The scheme (7.2

becomes a learning algorithm

fz,λ := arg min
f ∈HK,z

{∑
x∈x̄

(
f (x) − yx

)2 + γ ‖f ‖2
K

}
, γ = mλ.

Therefore, Theorem 1 still holds and we have

fz,λ = (
ST

x̄ Sx̄ + mλI
)−1

ST
x̄ y.

This implies the expression (see, e.g., [3]) thatfz,λ = ∑m
i=1 ciKxi

with c = (ci)
m
i=1 satisfying

((K(xi, xj )
m
i,j=1 + mλI)c = y.

Denoteκ = √
supx∈X K(x, x) andfρ |x̄ = (fρ(x))x∈x̄ . Following our analysis for the scheme (3.

define

fx̄,λ = (
ST

x̄ Sx̄ + mλI
)−1

ST
x̄ fρ |x̄ .

Observe thatST
x̄ :Rm → HK,z is given byST

x̄ c = ∑m
i=1 ciKxi

. ThenST
x̄ Sx̄ satisfies

ST
x̄ Sx̄f =

∑
x∈x̄

f (x)Kx = mLK,x̄Sx̄(f ), f ∈HK,z,

whereLK,x̄ :�2(x̄) → HK is defined as

LK,x̄c = 1

m

m∑
i=1

ciKxi
.

It is a good approximation of the integral operatorLK :L2
ρX

→ HK defined by

LK(f )(x) =
∫
X

K(x, y)f (y)dρX(y), x ∈ X.

The operatorLK can also be defined as a self-adjoint operator onHK or onL2
ρX

. We shall use the sam
notionLK for these operators defined on different domains. As operators onHK , LK,x̄Sx̄ approximates
LK well. In fact, it was shown in [5] that

E
(‖LK,x̄Sx̄ − LK‖HK→HK

)
� κ2

√
m

. (7.3)

To get sharper error bounds in Theorem 3, we need estimates for‖LK,x̄(fρ |x̄ ) − LKfρ‖K . Since the
functionfρ /∈HK in general, we need the following improvement of (7.3) with domainL2

ρX
.

Lemma 1. Let x̄ ∈ Xm be randomly drawn according toρX. For anyf ∈ L2
ρX

,

E
(∥∥LK,x̄(f |x̄ ) − LKf

∥∥
K

) = E

(∥∥∥∥∥ 1

m

m∑
i=1

f (xi)Kxi
− LKf

∥∥∥∥∥
K

)
� κ‖f ‖ρ√

m
.
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Proof. Defineξ to be theHK -valued random variableξ = f (x)Kx over(X,ρX). Then 1
m

∑m
i=1 f (xi) ×

Kxi
− LKf = 1

m

∑m
i=1 ξ(xi) − E(ξ). We know that{

E

(∥∥∥∥∥ 1

m

m∑
i=1

ξ(xi) − E(ξ)

∥∥∥∥∥
K

)}2

� E

(∥∥∥∥∥ 1

m

m∑
i=1

ξ(xi) − E(ξ)

∥∥∥∥∥
2

K

)
= 1

m

(
E

(‖ξ‖2
K

) − ∥∥E(ξ)
∥∥2

K

)
which is bounded byκ2‖f ‖2

ρ/m. �
The functionfx̄,λ may be considered as an approximation offλ where

fλ := (LK + λI)−1LKfρ. (7.4)

In fact,fλ is a minimizer of the optimization problem

fλ = arg min
f ∈HK

{‖f − fρ‖2
ρ + λ‖f ‖2

K

} = arg min
f ∈HK

{
E(f ) − E(fρ) + λ‖f ‖2

K

}
. (7.5)

Theorem 3. Let z be randomly drawn according toρ. Then

Ez∈Zm

(‖fz,λ − fx̄,λ‖K

)
� κ

√
σ 2(ρ)√
mλ

and

Ex̄∈Xm

(‖fx̄,λ − fλ‖K

)
� 3κ‖fρ‖ρ√

mλ
.

Proof. The same proof as that of Theorem 2 and Proposition 1 shows that

Ey

(‖fz,λ − fx̄,λ‖2
K

)
�

κ2
∑m

i=1 σ 2
xi

(λ2
x̄ + mλ)2

.

But Ex̄(
∑m

i=1 σ 2
xi
) = mσ 2(ρ). So the first statement follows.

To see the second statement we writefx̄,λ − fλ asfx̄,λ − f̃λ + f̃λ − fλ, where

f̃λ := (LK,x̄Sx̄ + λI)−1LKfρ. (7.6)

Since

fx̄,λ − f̃λ = (LK,x̄Sx̄ + λI)−1

(
1

m
ST

x̄ fρ |x̄ − LKfρ

)
, (7.7)

applying Lemma 1 tof = fρ tells us that

E
(‖fx̄,λ − f̃λ‖K

)
� 1

λ
E

(∥∥∥∥ 1

m
ST

x̄ fρ |x̄ − LKfρ

∥∥∥∥
K

)
� κ‖fρ‖ρ√

mλ
.

To estimatef̃λ − fλ, we writeLKfρ as(LK + λI)fλ. Then

f̃λ − fλ = (LK,x̄Sx̄ + λI)−1(LK + λI)fλ − fλ = (LK,x̄Sx̄ + λI)−1(LKfλ − LK,x̄Sx̄fλ).

Hence

‖f̃λ − fλ‖K � 1‖LKfλ − LK,x̄Sx̄fλ‖K. (7.8)

λ
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3 (1)]:

l
is used
Applying Lemma 1 again, we see that

E
(‖f̃λ − fλ‖K

)
� 1

λ
E

(‖LKfλ − LK,x̄Sx̄fλ‖K

)
� κ‖fλ‖ρ√

mλ
.

Note thatfλ is a minimizer of (7.5). Takingf = 0 yields‖fλ − fρ‖2
ρ + λ‖fλ‖2

K � ‖fρ‖2
ρ . Hence

‖fλ‖ρ � 2‖fρ‖ρ and ‖fλ‖K � ‖fρ‖ρ/
√

λ. (7.9)

Therefore, our second estimate follows.�
The last step is to estimate the approximation error‖fλ − fρ‖.

Theorem 4. Definefλ by (7.4). If L−r
K fρ ∈ L2

ρX
for some0 < r � 1, then

‖fλ − fρ‖ρ � λr
∥∥L−r

K fρ

∥∥
ρ
. (7.10)

When1
2 < r � 1, we have

‖fλ − fρ‖K � λr− 1
2
∥∥L−r

K fρ

∥∥
ρ
. (7.11)

We follow the same line as we did in [11]. Estimates similar to (7.10) can be found [3, Theorem
for a self-adjoint strictly positive compact operatorA on a Hilbert spaceH, there holds for 0< r < s,

inf
b∈H

{‖b − a‖2 + γ
∥∥A−sb

∥∥2} � γ r/s
∥∥A−ra

∥∥2
. (7.12)

(A mistake was made in [3] when scaling froms = 1 to generals > 0: r should be< 1 in the genera
situation.) A proof of (7.10) was given in [5]. Here we provide a complete proof because the idea
for verifying (7.11).

Proof of Theorem 4. If {λi,ψi}i�1 are the normalized eigenpairs of the integral operatorLK :L2
ρX

→
L2

ρX
, then‖√λiψi‖K = 1 whenλi > 0.

Write fρ = Lr
Kg for someg = ∑

i�1 diψi with ‖{di}‖�2 = ‖g‖ρ < ∞. Thenfρ = ∑
i�1 λr

i diψi and by
(7.4),

fλ − fρ = (LK + λI)−1LKfρ − fρ = −
∑
i�1

λ

λi + λ
λr

i diψi.

It follows that

‖fλ − fρ‖ρ =
{∑

i�1

(
λ

λi + λ
λr

i di

)2
}1/2

= λr

{∑
i�1

(
λ

λi + λ

)2(1−r)(
λi

λ + λi

)2r

d2
i

}1/2

.

This is bounded byλr‖{di}‖�2 = λr‖g‖ρ = λr‖L−r
K fρ‖ρ. Hence (7.10) holds.

Whenr > 1
2, we have

‖fλ − fρ‖2
K =

∑(
λ

λi + λ
λ

r− 1
2

i di

)2

= λ2r−1
∑(

λ

λi + λ

)3−2r(
λi

λ + λi

)2r−1

d2
i .
λi>0 i�1
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eri-

,

ss

on

ch-
ult can be
This is again bounded byλ2r−1‖{di}‖2
�2 = λ2r−1‖L−r

K fρ‖2
ρ. The second statement (7.11) has been v

fied. �
Combining Theorems 3 and 4, we find the expected value of the error‖fz,λ − fρ‖. By choosing the

optimal parameter in this bound, we get the following convergence rates.

Corollary 3. Let z be randomly drawn according toρ. DenoteΣ(ρ) = κ
√

σ 2(ρ) + 3κ‖fρ‖ρ . Suppose
L−r

K fρ ∈ L2
ρX

for some1
2 < r � 1. We have

Ez∈Zm

(‖fz,λ − fρ‖K

)
� Σ(ρ)√

mλ
+ λr− 1

2
∥∥L−r

K fρ

∥∥
ρ
. (7.13)

It follows that whenλ = (Σ(ρ)/‖L−r
K fρ‖ρ)

2
2r+1 (1/m)

1
1+2r ,

Ez∈Zm

(‖fz,λ − fρ‖K

)
� 2

(
Σ(ρ)

) 2r−1
2r+1

∥∥L−r
K fρ

∥∥ 2
2r+1
ρ

(
1

m

) 2r−1
4r+2

. (7.14)

Remark. Corollary 3 provides estimates for theHK -norm error offz,λ − fρ . So we requirefρ ∈ HK

which is equivalent toL
− 1

2
K fρ ∈ L2

ρX
. To get convergence rates we assume a stronger conditionL−r

K fρ ∈
L2

ρX
for some1

2 < r � 1. The optimal rate derived from Corollary 3 is achieved byr = 1. In this case

Ez∈Zm(‖fz,λ − fρ‖K) = O((1/m)
1
6 ). Note that the norm‖fz,λ − fρ‖K cannot be bounded by the exce

errorE(fz,λ) − E(fρ).

Corollary 4. Let z be randomly drawn according toρ. DenoteΣ(ρ) = κ
√

σ 2(ρ) + 3κ‖fρ‖ρ . Assume
L−r

K fρ ∈ L2
ρX

for some0< r � 1. We have

Ez∈Zm

(‖fz,λ − fρ‖ρ

)
� κΣ(ρ)√

mλ
+ λr

∥∥L−r
K fρ

∥∥
ρ
. (7.15)

In particular, if we takeλ = (κΣ(ρ)/‖L−r
K fρ‖ρ)

1
r+1 (1/m)

1
2+2r , there holds

Ez∈Zm

(‖fz,λ − fρ‖ρ

)
� 2

(
κΣ(ρ)

) r
r+1

∥∥L−r
K fρ

∥∥ 1
r+1
ρ

(
1

m

) r
2r+2

. (7.16)

Remark. The convergence rate (7.16) for theL2
ρX

-norm is obtained by optimizing the regularizati

parameterλ in (7.15). The sharp rate derived from Corollary 4 isO((1/m)
1
4 ), which is achieved by

r = 1.

Our bound for theHK -norm error stated in Corollary 3 is new in learning theory.
Let us now compare our error bounds inL2 with the existing results. In [18], a leave-one-out te

nique was used to derive the expected value of learning schemes. For the scheme (7.2), the res
expressed as

Ez∈Zm

(
E(fz,λ)

)
�

(
1+ 2κ2)2

inf

{
E(f ) + λ‖f ‖2

K

}
. (7.17)
mλ f ∈HK 2
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ion

2). The

volving

erived
Notice thatE(f ) − E(fρ) = ‖f − fρ‖2
ρ . Denote the regularization error (see [12]) as

D(λ) = inf
f ∈HK

{
E(f ) − E(fρ) + λ‖f ‖2

K

} = inf
f ∈HK

{‖f − fρ‖2
ρ + λ‖f ‖2

K

}
. (7.18)

The bound (7.17) can be restated as

Ez∈Zm

(‖fz,λ − fρ‖2
ρ

)
� D(λ/2) + (

E(fρ) +D(λ/2)
)(4κ2

mλ
+ 4κ4

(mλ)2

)
.

One can then derive the convergence rate(1/m)
1
4 in expectation whenfρ ∈ HK andE(fρ) > 0. In fact,

(7.12) withH = L2
ρX

, A = LK holds forr = s = 1/2, which yields the best rate for the regularizat

errorD(λ) � ‖fρ‖2
Kλ. By takingλ = 1/

√
m, one can thus getEz∈Zm(‖fz,λ − fρ‖2

ρ) = O((1/m)
1
2 ), the

same as Corollary 4. Applying (3.2), one can have the probability estimate‖fz,λ − fρ‖ρ � (C/δ)(1/m)
1
4

for the confidence 1− δ.
In [5], a functional analysis approach was employed for the error analysis of the scheme (7.

main result asserts that for any 0< δ < 1, with confidence 1− δ,

∣∣E(fz,λ) − E(fλ)
∣∣ � Mκ2

√
mλ

(
1+ κ√

λ

)(
1+

√
2 log

2

δ

)
. (7.19)

Convergence rates were also derived in [5, Corollary 1] by combining (7.19) with (7.10): whenfρ lies in
the range ofLK , for any 0< δ < 1, with confidence 1− δ, there holds

‖fz,λ − fρ‖ρ � C

(
log(2/δ)

m

) 1
5

, if λ =
(

log(2/δ)

m

) 1
5

.

Thus the confidence is improved from 1/δ to log(2/δ), while the rate is weakened to(1/m)
1
5 . In the next

section we shall show that‖fz,λ − fρ‖ρ � C
√

log(4/δ)(1/m)
1
4 with confidence 1− δ, thus improving

the confidence estimate for the best rate known so far. Our approach is short and neat, without in
the leave-one-out technique.

8. Probability estimates by McDiarmid inequalities

In this section we apply some McDiarmid inequalities to improve the probability estimates d
from expected values by the Markov inequality.

Let (Ω,ρ) be a probability space. Fort = (t1, . . . , tm) ∈ Ωm and t ′i ∈ Ω , we denoteti :=
(t1, . . . , ti−1, t

′
i , ti+1, . . . , tm).

Lemma 2. Let {ti , t ′i}mi=1 be i.i.d. drawers of the probability distributionρ on Ω , andF :Ωm → R be a
measurable function.

(1) If for eachi there isci such thatsupt∈Ωm, t ′i∈Ω |F(t) − F(ti)| � ci , then

Probt∈Ωm

{
F(t) − Et

(
F(t)

)
� ε

}
� exp

{
− 2ε2∑m

i=1 c2
i

}
, ∀ε > 0. (8.1)
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form

2 can
(2) If there isB � 0 such thatsupt∈Ωm,1�i�m |F(t) − Eti (F (t))| � B, then

Probt∈Ωm

{
F(t) − Et

(
F(t)

)
� ε

}
� exp

{
− ε2

2(Bε/3+ ∑m
i=1 σ 2

i (F ))

}
, ∀ε > 0, (8.2)

whereσ 2
i (F ) := supz\{ti }∈Ωm−1 Eti {(F (t) − Eti (F (t)))2}.

The first inequality is the McDiarmid inequality, see [8]. The second inequality is its Bernstein
which can be found in [16].

First, we show how the probability estimate for the function reconstruction stated in Theorem
be improved, replacing 1/δ by log(1/δ).

Theorem 5. SupposeST
x̄ Sx̄ + γ I is invertible and Assumption holds. Under the condition that|yx −

f ∗(x)| � M for eachx ∈ x̄, we have for every0 < δ < 1, with probability1− δ,

‖f̃ − fx̄,γ ‖H �
∥∥(

ST
x̄ Sx̄ + γ I

)−1∥∥‖J‖
(√

σ 2 +
√

8σ 2 log
1

δ
+ 4

3
M log

1

δ

)

� ‖J‖
λ2

x̄ + γ

(√
σ 2 +

√
8σ 2 log

1

δ
+ 4

3
M log

1

δ

)
.

Proof. Write ‖f̃ − fx̄,γ ‖H as∥∥L(y − Sx̄f
∗)

∥∥
H �

∥∥(
ST

x̄ Sx̄ + γ I
)−1∥∥∥∥ST

x̄ (y − Sx̄f
∗)

∥∥
H.

Consider the functionF :�2(x̄) → R defined by

F(y) = ∥∥ST
x̄ (y − Sx̄f

∗)
∥∥
H.

Recall from the proof of Theorem 2 thatF(y) = ‖∑
x∈x̄ (yx − f ∗(x))Ex‖H and

Ey(F ) �
√

Ey

(
F 2

) =
√∑

x∈x̄

σ 2
x 〈Ex,Ex〉H � ‖J‖

√
σ 2. (8.3)

Then we can apply the McDiarmid inequality. Letx0 ∈ x̄ andy ′
x0

be a new sample atx0. We have∣∣F(y) − F
(
yx0

)∣∣ = ∣∣∥∥ST
x̄ (y − Sx̄f

∗)
∥∥
H − ∥∥ST

x̄

(
yx0 − Sx̄f

∗)∥∥
H

∣∣ �
∥∥ST

x̄

(
y − yx0

)∥∥
H.

The bound equals‖(yx0 − y ′
x0

)Ex0‖H � |yx0 − y ′
x0

|‖J‖. Since|yx − f ∗(x)| � M for eachx ∈ x̄, it can be
bounded by 2M‖J‖, which can be taken asB in Lemma 2 (2). Also,

Eyx0

(∣∣F(y) − Eyx0

(
F(y)

)∣∣2) �
∫ (∫

|yx0 − y ′
x0

|‖J‖dρx0(y
′
x0

)

)2

dρx0(yx0)

�
∫ ∫

(yx0 − y ′
x0

)2‖J‖2 dρx0(y
′
x0

)dρx0(yx0) � 4‖J‖2σ 2
x0

.

This yields
∑

x0∈x̄ σ 2
x0

(F ) � 4‖J‖2σ 2. Thus Lemma 2 (2) tells us that for everyε > 0,

Proby∈Y x̄

{
F(y) − Ey

(
F(y)

)
� ε

}
� exp

{
− ε2

2 2

}
.

2(2M‖J‖ε/3+ 4‖J‖ σ )
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pplying
ability

e

Choose the smallestε so that the probability bound equalsδ. That is, solve the quadratic equation

ε2

2(2M‖J‖ε/3+ 4‖J‖2σ 2)
= log

1

δ
.

We find the probability estimate

F(y) � Ey(F ) + ‖J‖
(√

8σ 2 log
1

δ
+ 4

3
M log

1

δ

)
for the confidence 1− δ. This in connection with (8.3) proves Theorem 5.�

Turn to the learning theory estimates. The purpose is to improve the bound in Theorem 3 by a
the McDiarmid inequality. To this end, we refine Lemma 1 from the expected value to a prob
estimate form.

Lemma 3. Let x̄ ∈ Xm be randomly drawn according toρX. For any f ∈ L∞
ρX

and 0 < δ < 1, with
confidence1− δ, there holds∥∥∥∥∥ 1

m

m∑
i=1

f (xi)Kxi
− LKf

∥∥∥∥∥
K

� 4κ‖f ‖∞
3m

log
1

δ
+ κ‖f ‖ρ√

m

(
1+

√
8 log

1

δ

)
.

Proof. Define a functionF : Xm → R as

F(x̄) = F(x1, . . . , xm) =
∥∥∥∥∥ 1

m

m∑
i=1

f (xi)Kxi
− LKf

∥∥∥∥∥
K

.

For j ∈ {1, . . . ,m}, we apply the triangle inequality and obtain∣∣F(x̄) − F
(
x̄j

)∣∣ �
∥∥∥∥ 1

m

(
f (xj ) − f (x ′

j )
)
Kxj

∥∥∥∥
K

� κ

m

∣∣f (xj ) − f (x ′
j )

∣∣.
It follows that |F(x̄) − Exj

(F (x̄))| � (2κ‖f ‖∞)/m =: B. Moreover,

Exj

(
F(x̄) − Exj

(
F(x̄)

))2 �
∫
X

(∫
X

κ

m

∣∣f (xj ) − f (x ′
j )

∣∣dρX(x ′
j )

)2

dρX(xj )

� κ2

m2

∫
X

∫
X

2
∣∣f (xj )

∣∣2 + 2
∣∣f (x ′

j )
∣∣2

dρX(x ′
j )dρX(xj ) �

4κ2‖f ‖2
ρ

m2
.

So we have
∑m

j=1 σ 2
j (F ) � (4κ2‖f ‖2

ρ)/m.
Thus we can apply Lemma 2 (2) to the functionF and find that

Prob̄x∈Xm

{
F(x̄) − Ex̄

(
F(x̄)

)
� ε

}
� exp

{
− ε2

2
(2κ‖f ‖∞ε

3m
+ 4κ2‖f ‖2

ρ

m

)
}
.

Solving a quadratic equation again by setting the probability bound to beδ, we see that with confidenc
1− δ,

F(x̄) � Ex̄

(
F(x̄)

) + 4κ‖f ‖∞ log
1 + κ‖f ‖ρ√

√
8 log

1
.

3m δ m δ
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y

Lemma 1 says thatEx̄(F (x̄)) � (κ‖f ‖ρ)/
√

m. Our conclusion follows. �
Theorem 6. Let z be randomly drawn according toρ satisfying|y| � M almost surely. Then for an
0 < δ < 1, with confidence1− δ we have

‖fz,λ − fλ‖K � κM log(4/δ)√
mλ

(
36+ 4κ

3
√

mλ

)
.

Proof. Since|y| � M almost surely, we know that‖fρ‖ρ � ‖fρ‖∞ � M .
Recall the functionf̃λ defined by (7.6). It satisfies (7.7). Hence

‖fx̄,λ − f̃λ‖K � 1

λ

∥∥∥∥∥ 1

m

m∑
i=1

fρ(xi)Kxi
− LKfρ

∥∥∥∥∥
K

.

Applying Lemma 3 to the functionfρ , we find that with confidence 1− δ,

‖fx̄,λ − f̃λ‖K � 4κM

3mλ
log

1

δ
+ κM√

mλ

(
1+

√
8 log

1

δ

)
.

In the same way, by Lemma 3 with the functionfλ and (7.8), we find

Prob̄x∈Xm

{
‖f̃λ − fλ‖K � 4κ‖fλ‖∞

3mλ
log

1

δ
+ κ‖fλ‖ρ√

mλ

(
1+

√
8 log

1

δ

)}
� 1− δ.

According to (7.9),‖fλ‖ρ � 2M and‖fλ‖∞ � κ‖fλ‖K � (κM)/
√

λ. Therefore, with confidence 1− δ,
there holds

‖f̃λ − fλ‖K � 4κ2M

3mλ
√

λ
log

1

δ
+ 2κM√

mλ

(
1+

√
8 log

1

δ

)
.

Finally, we apply Theorem 5. For eachx̄ ∈ Xm, there holds with confidence 1− δ,

‖fz,λ − fx̄,λ‖K � κ

mλ

(√
σ 2 +

√
8σ 2 log

1

δ
+ 4

3
M log

1

δ

)
. (8.4)

Hereσ 2 = ∑m
i=1 σ 2

xi
. Apply the Bernstein inequality

Prob̄x∈Xm

{
1

m

m∑
i=1

ξ(xi) − E(ξ) � ε

}
� exp

{
− mε2

2(Bε/3+ σ 2(ξ))

}

to the random variableξ(x) = ∫
Y
(y − fρ(x))2 dρ(y|x). It satisfies 0� ξ � 4M2, E(ξ) = σ 2(ρ), and

σ 2(ξ) � 4M2σ 2(ρ). Also,E(ξ) = σ 2(ρ) and(1/m)
∑m

i=1 ξ(xi) = (1/m)
∑m

i=1 σ 2
xi

. Solving the quadratic
equation for the probability bound equal toδ, we see that

Prob̄x∈Xm

{
1

m

m∑
i=1

σ 2
xi

� σ 2(ρ) + 8M2 log(1/δ)

3m
+

√
8M2σ 2(ρ) log(1/δ)

m

}
� 1− δ.

Hence with confidence 1− δ,

√
σ 2 �

√
mσ 2(ρ) + M

√
3 log

1 +
(

8mM2σ 2(ρ) log
1
)1/4
δ δ



S. Smale, D.-X. Zhou / Appl. Comput. Harmon. Anal. 19 (2005) 285–302 301

ity

2001)

02) 413–

, Found.

l. 375,

(2000)

erlin,
which is bounded by 2
√

mσ 2(ρ) + 2M
√

3 log(1/δ). Together with (8.4), we see that with probabil
1− 2δ in Zm, we have the bound

‖fz,λ − fx̄,λ‖K � 2κ
√

σ 2(ρ)√
mλ

+ 5κM
√

log(1/δ)

mλ

(
1+

√
8 log

1

δ

)
.

Combining the above three bounds for‖fx̄,λ − f̃λ‖K , ‖f̃λ − fλ‖K , and‖fz,λ − fx̄,λ‖K , we know that
for 0< δ < 1/4, with confidence 1− 4δ, ‖fz,λ − fλ‖K is bounded by

κM√
mλ

{
20 log(1/δ)√

m
+ 3+ 3

√
8 log

1

δ
+ 5

√
2σ 2(ρ) log(1/δ)

M
+ 4κ log(1/δ)

3
√

mλ

}

� κM√
mλ

√
log

1

δ

{
20

√
log(1/δ)

m
+ 3

log 2
+ 6

√
2+ 5

√
2σ 2(ρ)

M
+ 4κ

3

√
log(1/δ)

mλ

}
.

But σ 2(ρ) � M2. So our conclusion follows. �
We are in a position to state our convergence rates in both‖ · ‖K and‖ · ‖ρ norms.

Corollary 5. Let z be randomly drawn according toρ satisfying|y| � M almost surely. Iffρ is in the
range ofLK , then for any0 < δ < 1, with confidence1− δ we have

‖fz,λ − fρ‖K � 2
∥∥L−1

K fρ

∥∥2/3
ρ

(
40κM log

4

δ

)1/3( 1

m

) 1
6

(8.5)

for m � (κ2‖L−1
K fρ‖ρ)/(360M log(4/δ)), by takingλ = (40κM log(4/δ)/‖L−1

K fρ‖ρ)
2/3(1/m)1/3; and

‖fz,λ − fρ‖ρ � 2
∥∥L−1

K fρ

∥∥1/2
ρ

(
40κM log

4

δ

)1/2( 1

m

) 1
4

(8.6)

for m � (κ2‖L−1
K fρ‖2/3

ρ )/(180(M log(4/δ))2/3), by takingλ = (40κM log(4/δ)/‖L−1
K fρ‖ρ)

1/2(1/m)1/4.
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