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Abstract

We continue our study [S. Smale, D.X. Zhou, Shannon sampling and function reconstruction from point values,
Bull. Amer. Math. Soc. 41 (2004) 279-305] of Shannon sampling and function reconstruction. In this paper, the
error analysis is improved. Then we show how our approach can be applied to learning theory: a functional analysis
framework is presented; dimension independent probability estimates are given not only for the errat?n the
spaces, but also for the error in the reproducing kernel Hilbert space where the learning algorithm is performed.
Covering number arguments are replaced by estimates of integral operators.
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1. Introduction

This paper considers regularization schemes associated with the least square loss and Hilbétt spaces
of continuous functions. Our target is to provide a unified approach for two topics: interpolation theory,
or more generally, function reconstruction in Shannon sampling theoryMitieing a space of band-
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limited functions or functions with certain decay; and regression problem in learning theorj\witing
a reproducing kernel Hilbert spagé .

First, we improve the probability estimates in [12] with a simplified development. Then we apply the
technique for function reconstruction to learning theory. In particular, we show that a regression func-
tion f, can be approximated by a regularization scheinein Hx . Dimension independent exponential
probability estimates are given for the eriof; » — £, x. Our error bounds provide clues to the asymp-
totic choice of the regularization paramegeor A.

2. Sampling operator

Let H be a Hilbert space of continuous functions on a complete metric sfamed the inclusion
J:H — C(X) is bounded with| J || < oc.

Then for eachx € X, the point evaluation functiongf — f(x) is bounded or{ with norm at most
IIJ]l. Hence there exists an elemédit € H with || E, ||« < || /| such that

fx)=(f,Ex)n. VfeH. (2.1)
Let x be a discrete subset &f. Define the sampling operatsg : H — ¢2(x) by

S:(f) = (), .-

We shall always assume th&t is bounded. This holds naturally wheris finite.
DenoteSiT as the adjoint of;. For eaclr € ¢2(x), there holds

XEX XEX

(f’SxTC)HZ(Sif,c>e2(x)ZZfo(X)=<f’ZCxEx> . VfeH.
H

It follows that
STe=> cE,, Veel’().

XEX

3. Algorithm
To allow noise, we make the following assumption.

Assumption. The sampled values= (y,).c; have the form for somg* € H:

For eachx € x, y, = f*(x) + n., wheren, is independently drawn from,. (3.1)
Here for eachx € X, p, is a probability measure with zero mean, and its varian¢esatisfieso? :=
eri 0)62 < Q.

Note that)” ; (f*(x))? = ISz f* 115, < ISz IZ1 £*113, < oo
The Markov inequality for a nonnegative random variapkesserts that

Prob{ég?}}l—& forall0 <8 < 1. (3.2)
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It tells us that for every > 0,

Prob[(ne) i, > e} < E(ned ) /o =

By takings — oo, we see thatn,} € £?(x) and hencez € £2(X) in probability.
Lety > 0. With the sample := (x, y,).ez, cOnsider the minimization problem

. . ~ . 2 2
Function reconstruction f :=argmin — Yy . 3.3
f = argmir (@ —w) £ (3.3)

xex

Theorem 1. If ST Sz + 1 is invertible, thenf exists, is unique and
f:Ly, L= (S)ETS;—F)/I)_lS;.

Proof. Denote

E(F) = (f@) — )"

Xex

Since)” . (f(x)? =Sz f||£2m (ST Sz f, f)n, we know that forf € H,
EO)+rIFIG=((SESc+vI)f fy = 2Ty, fyy + 15

Taking the functional derivative [10] fof € H, we see that any minimizef of (3.3) satisfies
(SISs+yI)f=Sly.
This proves Theorem 1.0

Thus (3.3) with the invertibility of the operatdt! Sz + y 1 becomes algorithmic. The invertibility
condition is valid for rich data.

Definition 1. We say thaifc providesrich data(with respect td®) if
Az = )‘IQL 1Sz f ez /LS Nl (3.4)

is positive. It providepoor dataif Az = 0.

The problem of function reconstruction here is to estimate the ¢ifer £*|/%. In this paper we shall
show in Corollary 2 below that in the rich data case, with= 0, for every 0< § < 1, with probability

1 -4, there holds
N FINCT
IF = Folln < T/ (3.5)

This estimate does not require the boundedness of the ppiddoreover, under the stronger condition
(see [12]) thatn, | < M for eachx € x, we shall use the McDiarmid inequality and prove in Theorem 5
below that for every G< § < 1, with probability 1— §,

~ 1 4 1
17~ £ < 151 feotiog + Sartog ). 36
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The two estimates, (3.5) and (3.6), improve the bounds in [12]. It turns out that Theorem 4 in [12] is
a consequence of the remark which follows it about the Markov inequality. Conversations with David
McAllester were important to clarify this point.

4, Sampleerror

Define
Jry = L(Sz f7). (4.1)
The sample error takes the forff — f;’yu%.

Theorem 2. If ST'S; +y I is invertible and Assumption holds, for evéry § < 1, with probabilityl — s,

there holds
x (ST Sz +y D72 J |02
If = feyllf < ; :

If |n.| < M for someM > 0 and eachx € x, then for every > 0, we have

2
Prob{Il f — f, I3, < ILIIPo?(L+ &)} > Pm*%ﬂmﬂw

Proof. Write || f — fz., 113, as

|LG = Sef o3 < [(SESe + 1)
But

ST =Sef =) (ve — f*)Ex

XEX

) HPIST o = Se 3

Hence

ISTGr =S92, = 33 (0 = £ 0) 0w = F* &) (Exs Ex)g

xex x'ex

By the independence of the samples a@n@d, — f*(x)) = 0, E{(y, — f*(x))?} = o2, its expected
value is

E(|SI(y = S:/)3) =Y oXEy. Ey)

XeEX

Now (E,, E,.)n = || E, ||H |7 ]|2. So the expected value of the sample error can be bounded as

E(1f = fry 1) < | (ST Se +1) " [F171%0%.
The first desired probability estimate follows from the Markov inequality (3.2).

For the second estimate, we apply Theorem 3 from [12] (with 1) to the random variablgg?} ,cx.
Assumption tells us thak (17, ) = 0, which impliesE (%) = o2. So we see that for every> 0,

2 2 g M?e
Proh, Z{n"_a"}>8 <exp{—mlog(l+m)}.

XEX
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Here we have used the condition,| < M, which implies |2 — 02| < M2. Also, Y_ .. 0%(n?) <
> e: E@% < M?02 < co. The desired bound then follows from the inequality — fs,, 113, <
||L||2||{77x}||,§2(;) after replacing by ea?. O

Remark. Whenx containsn elements, we can take? < mM? < co.

Proposition 1. The sampling operatas; satisfies
1
Mty
For the operatorL, we have
Il Skl
Mty

[(sEse+vD) 7 <

LI <

Proof. Letv e H andu = (57 Sz + y1)~1v. Then
(SXTS; + yl)u =v.
Taking inner products on both sides withwe have
(Szu, Sz 25y + v lullF;, = (v, u)r < [ollaellullze.
The definition of the richness; tells us that
(Szu, Sxut) ey = 1 Sxull 22z, = A5 Null3y-
It follows that
(A2 +p)lullFe < Tvllellulin
Hencellu||x < (A§ + )Y v|l%. This is true for every e H. So the bound for the first operator follows.

The second inequality is trivial. O

Corollary 1. If STS; + y 1 is invertible and Assumption holds, then for every § < 1, with probability
1-—§, there holds

5 J||20'2

[ L iy

5. Integration error
Recall thatfz , = L(Sz f*) = (ST Sz + y I)~1ST Sz £*. It can be written as

£, (5.1)

fey=(SISe+y D) (SESe 4yl —yI)f*=f*—y(SLSe+y1)

This in connection with Proposition 1 proves the following proposition.
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Proposition 2. Supposes! S; + y I is invertible. We have

YILf

¥ g
I fey — 7 lIn 21y

In particular, in the rich data case, we may take= 0 and obtainf; , = f*. Hence the following
estimate is a consequence of Corollary 1.

Corallary 2. If A; > 0andy =0, for every0 < § < 1, with probabilityl — §, there holds

- J 2/8
1 = Frlln < % oL

For the poor data case = 0, we need to estimate(S? Sz + y 1)~ f* according to (5.1).
Recall that for a positive self-adjoint linear operatbon a Hilbert spacé{, there holds
Iy +y D7 =y C+y DTS = Le+ L) |, < I f = Lelln+ vliglx

for everyg € H. Taking the infimum ovep € H, we have

[y €+ y D7 |y <K vy i= Inf IS = Lale+vlighn), VS €M,y >0 (52)

This is theK -functional betweerH and the range of. Thus, whenf is in the closure of the range of
L in ‘H, we have lim_olly (L + yI)~1fllx = 0. If f isin the range ofZ" for some O< r < 1, then
ly(L+y D flln <21L7 fllny’- See, e.g., [11].

Using (5.2) for the operatof = S!'S;, we can use & -functional betweerH and the range of? S;
to get the convergence rate.

Proposition 3. Define f; as
fy =g inf{| £ = STSsgly + vligln}. v >0
There holds
ey = f e <[ f* = STSef |3y + v 1L e
In particular, if £* lies in the closure of the range 6f Sz, thenlim, o fz., — f*llx = 0. If f*isinthe

range of(SiTS;)’ forsome0 <r <1, then| fi, — f*lln < 2||(S;S)g)_rf*”7-()/r.

Compared with Corollary 2, Proposition 3 in connection with Corollary 1 gives an error estimate for
the poor data case wheff is in the range of SI S;)". For every O< § < 1, with probability 1— §, there
holds

I 71IVo?

If = F7lin < N

+2|(se50) " e
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6. Moregeneral setting of function reconstruction

From (2.1) we see that the boundedness;ofs equivalent to the Bessel sequence property of the
family {E,}.cz of elements ir, i.e., there is a positive constaBtsuch that

2
S N En] < BIfIG, YfeH. (6.1)
XEX

Moreover,x provides rich data if and only if this family formsfeameof H, i.e., there are two positive

constantsA < B called frame bounds such that

ANFIB <D Edn|* <BIFIZ. VfeH.

XEX

In this case, the operat6¥ S; is called theframe operatorlts inverse is usually difficult to compute, but
it satisfies the reconstruction property:

-1
£=Y (f (SIS:) Eu)yEc. YfeH.
XEX
For these basic facts about frames, see [17].
The function reconstruction algorithm studied in the previous sections can be generalized to a setting
with a Bessel sequendé, }, .z in H satisfying (6.1). Here the point evaluation (2.1) is replaced by the
functional( f, E, )y and the minimization becomes

Jr=argmin 3 ((f Ere— )"+ v /13- (6.2)
XEX

The sample values in Assumption now take the form= (f*, E,)» + n.. If we replace the sampling
operatorS; by the operator front to ¢2(x) mappingf to ((f, E,)n)xex, then (6.2) can be analyzed in
the same way as above and all the error bounds hold true. Concrete examples for this generalized setting
can be found in the literature of image processing, inverse problems [6] and sampling theory [1]: the
Fredholm integral equation of the first kind, the moment problem, and the function reconstruction from
weighted-averages.

One can even consider more general function reconstruction schemes: replacing the least-square loss
in (6.2) by some other loss function afid||; by some other norm. For example, if we choose Vapnik's
e-insensitive loss}t|, := max{|¢| — ¢, 0}, and a function spack included inH (such as a Sobolev space
in L?), then a function reconstruction scheme becomes

fr=argmind 3 [(f. Ex)r — v, + y||f||;}. (6.3)
Jer XEX
When {E,}.cz is a Bessel sequence i but not a frame (corresponding to the poor data case), the
scheme (6.3) can be solved by a quadratic convex optimization problem but not by a linear operator in
general. We do not expect to analyze this scheme in a linear functional analysis framework. The error
would involve not only the variance, the Bessel sequence, and the regularization parameter, but also the
choice of the parameter. It would be interesting to derive error bounds for the function reconstruction
scheme (6.3).
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The rich data requirement is reasonable for function reconstruction such as sampling theory [13]. On
the other hand, in learning theory, the situation of poor data or poor frame badirds) as the number
of points inx increases) often happens. For such situations, weiakebe random samples of some
probability distribution.

7. Learningtheory

From now on we assume th#tis compact. Lep be a probability measure dh:= X x Y with Y = R.
The error for a functiory : X — Y is given by&(f) = [, (f(x) — y)2dp. The function minimizing the
error is called theegression functioand is given by

fp(x)=/yd,0(y|x), xeX.

Y

Herep(y|x) is the conditional distribution at induced byp. The marginal distribution oX is denoted
aspy. We assume that, € L3 . Denote] f ||, = 1flez, ando?(p) as the variance af.

The purpose of the regression problem in learning theory [3,7,9,14,15] is to find good approximations
of the regression function from a set of random sampleq (x;, y;)}"., drawn independently according
to p. This purpose is achieved in Corollaries 3, 4, and 5 below. Here we consider kernel based learning
algorithms.

Let K:X x X — R be continuous, symmetric and positive semidefinite, i.e., for any finite set of
distinct points{xy, ..., x;} C X, the matrix(K(x,-,xj))f’j:1 is positive semidefinite. Such a kernel is
called aMercer kernel

Thereproducing kernel Hilbert spackRKHS) H associated with the kerndl is defined to be the
closure [2] of the linear span of the set of functids, = K (x, -): x € X} with the inner product., -)
satisfying(K,, K,)x = K (x, y). The reproducing property takes the form

(Ky, )k =f(x), VxeX, feHkg. (7.1)

The optimization problem we study here is a regularized one with 30m@
. 1 2
Learning scheme :=arg minj{ — D) — Vi AFIE L. 7.2
"o foai=arg ming &3 (50 = )" + 401 (72

We shall investigate howy, , approximatesf, and how the choice of the regularization parameter
A = A(m) leads to (optimal) convergence rates. The convergen(te?pxinhas been considered in [4,5,
18]. The purpose of this section is to present a simple functional analysis approach, and to provide the
convergence rates in the spaklg as well as sharper, dimension independent probability estimates in
L2 .

pXThe reproducing kernel property (7.1) tells us that the minimizer of (7.2) liéégdn := spai K} ;
by projection onto this subspace. Thus, the optimization problem can be written in the same way as (3.3).
To see this, we denofe= {x;}_;, px = p(-|x) — f,(x) for x € X. ThenE, = K, for x € x. Assumption
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holds, and (3.1) is true except thét € H is replaced byf* = f,,. Denotey = (y;)""_,. The scheme (7.2)
becomes a learning algorithm

fori=arg min 3 (£ =) v ISRy =mi

K.z ~
XEX

Therefore, Theorem 1 still holds and we have
fo = (51 Sz +m)»l)_1SiTy.
This implies the expression (see, e.g., [3]) that. = Y ;¢ K, with ¢ = (¢;)I", satisfying
(K (xj, x))f 2y +mAl)c=y.
Denotex = ,/sup..x K(x,x) and f,|z = (f,(x))xex. Following our analysis for the scheme (3.3),
define
-1
f,;,)L = (S;S; +mk1) S)ETfpb;
Observe thas? :R” — Hy , is given bySTc = Y"1, c;K,,. ThenS! S; satisfies

SISif=) fOKc=mLg:S:(f). feHkz

X€EX

whereLg ; : £?(X) — Hy is defined as

It is a good approximation of the integral operaiqgy : L%X — Hg defined by

Le(H)(x) = / K(x. 9 f()dox(y). x€X.

X

The operatoll ¢ can also be defined as a self-adjoint operatotgnor on Lf,x. We shall use the same
notion L ¢ for these operators defined on different domains. As operatotéQrnl ¢ ; Sz approximates
Lk well. In fact, it was shown in [5] that

K2

Jn
To get sharper error bounds in Theorem 3, we need estimatdd_fok(f,|:) — Lk f,llx. Since the
function f, ¢ Hg in general, we need the following improvement of (7.3) with dorriaj)rg.

E(ILk S — L llHg—Hy) < (7.3)

Lemmal. Letx € X™ be randomly drawn according tey. For any f e Lf)X,

k|l fll,p
) STUm

1 m
E(|Lkz(flo) —Lx f| ) = E(‘ E;f(xi)[(xi —Lgf
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Proof. Define¢ to be theH-valued random variable = f(x)K, over (X, px). Then% Y f(x) x
K, —Lxf=2x%" 60)— E). We know that

2
m 1 m
=1 K i=1

Y &G —E®)
which is bounded by?| f[3/m. O

2

) = (B8 - |E@]2)

K

The functionf; ; may be considered as an approximatiorypfvhere

fii=Lg+AD i £y (7.4)
In fact, f; is a minimizer of the optimization problem
fi=arg min{llf — f, 15+ 211k} =arg min{E(H) = ECf,) + /1) (7.5)

Theorem 3. Letz be randomly drawn according to. Then

Ky 2(p)

Ezezm — Jx <
zezn (Il fzr — frollk) Tk

and
3icll foll
Jmr

Proof. The same proof as that of Theorem 2 and Proposition 1 shows that
K23l ol
(AZ+mh)? A)Z
But Ex(}_/~;02) = mo?(p). So the first statement follows.
To see the second statement we wifitg — f; as fi.» — fo + fr — fi, where

Ezexn (Il fer — follk) <

Ey(I fzr = feallk) <

foi=(Lg Sz + )\I)ilLKfp- (7.6)
Since
- 1
Sfin —fx=(L1<,;Sx+M)_l(;Sfop|x —kap), (7.7)
applying Lemma 1 tof = f, tells us that
~ 1 1 Kl foll
E(||f£,x—fx||K)<XE(‘ES)ETfp|x Lk f, ) \/_”A”.

To estimateﬂ — fi,wewriteLg f, as(Lg + AI) f;. Then
fi— fi=LgsS: +AD NLg +AD fo — fi = (L Sz + A YLk f — L :S2 f)-

Hence

- 1
||fk_fk||KgX”LKf)L_LK,)ES)EfA”K~ (7.8)
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Applying Lemma 1 again, we see that

1
(”f*_fk”K) (”LKfA LK,xSxfxllK)gkjbjzlp.
Note thatf; is a minimizer of (7.5). Taking' = 0 yields|| f; — f,,||2 +)‘||fk||K ||fp||2 Hence
”fk”p 2”fp||p and I Aillx < ”fp“ /[ (7.9)

Therefore, our second estimate followsa
The last step is to estimate the approximation efrir— f,|.

Theorem 4. Define f; by (7.4). If L' f, € L2 for some0 < r < 1, then
1= foll, KA LE fo] - (7.10)
When <r <1, we have

1= follk ALY £ - (7.11)

We follow the same line as we did in [11]. Estimates similar to (7.10) can be found [3, Theorem 3 (1)]:
for a self-adjoint strictly positive compact operatbion a Hilbert spacé{, there holds for G< r < s,
H —s 2 r/s —r 2
JQL{Hb—allz—i-yHA b} <yt AT e (7.12)

(A mistake was made in [3] when scaling fram= 1 to generak > 0: r should be< 1 in the general
situation.) A proof of (7.10) was given in [5]. Here we provide a complete proof because the idea is used
for verifying (7.11).

Proof of Theorem 4. If {X;, ¥;};>1 are the normalized eigenpairs of the integral operﬂb@rLf)x —
L3, then|| /A ¥;illx =1 wheny; > 0.

Write f, = L' g for someg =3, diyy; with |[{d;} |2 = lIgll, < o0. Thenf, =35, Ajd;; and by
(7.4),

A
= fp= Lk +AD Lk fy = == s Mdivi.

i1t
It follows that

N 2 ) 20-r) ;5.\ 1/2
—_ g —)\,rd :)\.r _ : dz .
115~ Sl {Z(x +a ) } {;(AiJr/\) (k+ki> }

Thisis bounded bYW H{di ez =A"lIgll, = A" IILY f,l,- Hence (7.10) holds.
Whenr > 5, we have

= e =3 (2 ta) —az () () e
AV R L\ ;i + A A+ A a
i1

A.i>0

1/2
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This is again bounded by ~|[{d;}|1%, = A> Y| LY f,|12. The second statement (7.11) has been veri-
fied. O

Combining Theorems 3 and 4, we find the expected value of the gfyar— f,||. By choosing the
optimal parameter in this bound, we get the following convergence rates.

Corollary 3. Letz be randomly drawn according tp. DenoteX (p) = kv/o?(p) + 3« |l f, |l ,. Suppose
Ly f, € L2 forsome; <r < 1. We have

2P0 i,
Ezezm(”fz,/\—fp||1<)<m+)L 2||Ly fp”p- (7.13)

It follows that wherk = (2 (p)/|ILy" foll )7

2

T(1/m T,

2 (1) w2
741 (-) : (7.14)
L m

Remark. Corollary 3 provides estimates for thi¢g-norm error of f,, — f,. So we requiref, € Hg

-1
Ezezn(Il 21 — Follk) <2(Z(0) 77| LY f»

which is equivalent tcL;% fr€ Lﬁx. To get convergence rates we assume a stronger condifiofj, €
Lf,x for some% < r < 1. The optimal rate derived from Corollary 3 is achievedrby 1. In this case,
Ezezn(|l fzr — follk) = O((l/m)%). Note that the norni| £z, — f,Ilx cannot be bounded by the excess
error&(fz,) — E(fy).

Corollary 4. Let z be randomly drawn according tp. DenoteX (p) = k+/0?(p) + 3« | f»l,- ASsume
Ly f, € L2, forsomed < r < 1. We have

KX)oy
EzeZ”Y(llfz,k_fp||p) < ﬂ)\ +2 ||LK fp”p- (715)
In particular, if we takel = (xE(p)/||L,}’fp||p)¢ll(1/m)2+12r , there holds

r

1 [/ 1\Zz+2
(_) . (7.16)
L m

Remark. The convergence rate (7.16) for tlﬂéx—norm is obtained by optimizing the regularization

parameten. in (7.15). The sharp rate derived from Corollary 4O$(1/m)?11), which is achieved by
r=1.

Esern (I f2r — £oll,) <20 2(0)) | LK £,

Our bound for théH ¢ -norm error stated in Corollary 3 is new in learning theory.

Let us now compare our error boundsZii with the existing results. In [18], a leave-one-out tech-
nique was used to derive the expected value of learning schemes. For the scheme (7.2), the result can t
expressed as

2

2« 2 . A 2
Exern(E(fe) < (1+ m) fuergk{em + Enqu}. (7.17)
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Notice thaté () — E(f,) = IIf — fp||§. Denote the regularization error (see [12]) as
DG = inf {E(/)=E(fo) + Al f1% ) {ILf = f15+ Al f 1%} (7.18)

The bound (7.17) can be restated as

= inf
feHg

Ezezn (Il fur — fol2) < DG/2) + (E(f,) + D(1/2) (4iz + ‘ﬂ)
zeZ Z,\ pllp) X 0 oy (m)\)z .

One can then derive the convergence (apen)% in expectation wherf, € Hx and&(f,) > 0. In fact,
(7.12) with'H = LZX, A = Lk holds forr = s = 1/2, which yields the best rate for the regularization
errorD(A) < || £, |24 By takingA = 1//m, one can thus g, zn (|| f2., — fp||f,) = 0((1/m)%), the

same as Corollary 4. Applying (3.2), one can have the probability estiyate— f, ||, < (C/(S)(l/m)flt
for the confidence % $.
In [5], a functional analysis approach was employed for the error analysis of the scheme (7.2). The
main result asserts that for any<0§ < 1, with confidence %t 8,
Mk

ﬁi (1+ %)(14—\/@). (7.19)

Convergence rates were also derived in [5, Corollary 1] by combining (7.19) with (7.10): fiyHies in
the range of ¢, for any 0< § < 1, with confidence * §, there holds

Iog<2/5>)é . (Iog(Z/a))é
SN = .

m

|Efei) — ES)| <

I fz2 = follp < C(

Thus the confidence is improved fromélto log(2/8), while the rate is weakened (dl/m)%. In the next
section we shall show thditf;, — f,ll, < C,/Iog(4/5)(1/m)711 with confidence 1- §, thus improving

the confidence estimate for the best rate known so far. Our approach is short and neat, without involving
the leave-one-out technique.

8. Probability estimates by M cDiarmid inequalities

In this section we apply some McDiarmid inequalities to improve the probability estimates derived
from expected values by the Markov inequality.

Let (£2,p) be a probability space. For = (11,...,14,) € 2™ and ! € 2, we denotet’ :=
(1, .o timt i1, oo t).

Lemma 2. Let {#;, /)", be i.i.d. drawers of the probability distributiop on £2, and F: 2" — R be a
measurable function.

(1) If for eachi there isc; such thaisup gn ycq |F (1) — F(t)] < ¢, then

2
Proleen { F(t) — E¢(F (1) > ¢} < exp{—%}, Ve > 0. (8.1)

i=1Ci
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(2) Ifthere isB > O such thalsup.om 1<; <, [F (1) — E, (F(1))| < B, then

82

2(B8/3 + Z;n:l Giz(F))
whereo2(F) := SUp,, con1 Eq {(F (1) — E, (F(1)))?).

Proheon {F(t) — Et(F()) > ¢} < exp{— } Ve > 0, (8.2)

The first inequality is the McDiarmid inequality, see [8]. The second inequality is its Bernstein form
which can be found in [16].

First, we show how the probability estimate for the function reconstruction stated in Theorem 2 can
be improved, replacing/s by log(1/§).

Theorem 5. SupposeS? S; + y 1 is invertible and Assumption holds. Under the condition that—
f*(x)| < M for eachx € x, we have for everQ < § < 1, with probabilityl — &,

1 4 1
1f = frpln < [(STSe+71)” ||||J||(v02+\/862logg+§Mlogg)
11 / 1 4 1
< Vo? 8o2log= + =Mlog~ |.

)»%-I—y( o+ 098+3 098)

Proof. Write || f — f:., ll% as
|26 =S < 18T Se+ v D) [T = 827
Consider the functiorF : £2(x) — R defined by
F) =S —S: /|-
Recall from the proof of Theorem 2 that(y) = || Y_

— f*(x))Exll» and

XE)C

Ey(F) <\ E,(F) = | 0XE,. E)yn < IV Vo2 (8.3)

XEX

Then we can apply the McDiarmid inequality. Lete x andy;  be a new sample ab. We have

[F) = F(*) | =850 = S £l = 87 (0" = Sa f*) || < U85 (v = y) 5,

The bound equall(y., — ¥,) Exo I < [yxo — Y5l 1 /- Sincely, — f*(x)| < M for eachx € &, it can be
bounded by 27| /||, which can be taken a8 in Lemma 2 (2). Also,

E, (|FO) — E, (FD)[) / ( f Vo — yxo|||J||dpx0<yxo>> Ao (Vo)

< / f (o — ¥ 21T 12 g (1) G (o) < 411 T [P052

This yieldsy_ (F) < 4||J|%0%. Thus Lemma 2 (2) tells us that for every- 0,

XQEX O—xo

82
Profers{FO) = £, (F0) > e} < eXIO{_2<2M||J||s/3+ 4T TPo?) }
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Choose the smallestso that the probability bound equalsThat is, solve the quadratic equation

2
&
22M||J|le/3+ 411 J11202)

We find the probability estimate

o1 4 1
F(y) <Ey(F)+|171|( |/802l0g s + zMlog -

for the confidence * §. This in connection with (8.3) proves Theorem 51

=lo !
= g(s,

Turn to the learning theory estimates. The purpose is to improve the bound in Theorem 3 by applying
the McDiarmid inequality. To this end, we refine Lemma 1 from the expected value to a probability
estimate form.

Lemma 3. Let x € X" be randomly drawn according tpy. For any f € L5 and 0 < § < 1, with
confidencel — §, there holds

1¢ Al flloo, . 1 kllfll, / 1
E ) Ky, — < —~+ + -
H f&DK,, — Lk f ) 3 Iog(s NG (1 8Iog5

i=1

Proof. Define a functionF : X" — R as

m

1

=3 f)K, —Lgf
m 4

i=1 K

Forj € {1,...,m}, we apply the triangle inequality and obtain

T
[F) = F(®)| < | (G = FED)Ky | <[ 70 = £

It follows that|F (x) — E., (F(x))| < (2|l fll)/m =: B. Moreover,

FxX)=F(x1,...,x,) =

2
Ex,-(F(i)—Ex,(F(i)))2<f</%\f(xj)—f(xmdpx(x;)) dpx (x;)

X X

—//zmx,)l +2| ()P dox (x) dox (x)) <

2||f||2
m

So we have)”” _102(F) (42 f12)/m.
Thus we can apply Lemma 2 (2) to the functiBrand find that

- - 82
Probxcx»{F(x) — Ex(F (%)) > ¢} < eXp{_Z(MﬂO& N 4f<2|\f|\§) }

3m m
Solving a quadratic equation again by setting the probability bound 8o Wwe see that with confidence
1-34,

Aic|| flloo

1kl sl [y 1
log—- + ——,/8log-.
3m 098 * Jm 098

F(E) < E:(F(D) +
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Lemma 1 says thalz (F (X)) < (k| f1l,)/+/m. Our conclusion follows. O

Theorem 6. Let z be randomly drawn according tp satisfying|y| < M almost surely. Then for any
0 < § < 1, with confidencd — § we have

kM log(4/8) (36 Ak )
Vm 3Vmr/)

Proof. Since|y| < M almost surely, we know thatf, ||, < || f,llco < M.
Recall the functionf; defined by (7.6). It satisfies (7.7). Hence

I fz0. = fullk <

~ 1
| fzn— fillk < X

1 m
p izzlfp(xi)Kxi — Lk f,

K
Applying Lemma 3 to the functiorf,, we find that with confidence % g,

Ade M 1 M
Ifes— Fillk < 505 1095 "fk<1+,/8|og>

In the same way, by Lemma 3 with the functignand (7.8), we find

7 4K||fk||oo K”fAHp 1
Probcx {||fx hllk < 3Inn lo 93 + i (1—|—,/8log >1-§

According to (7.9),| fill, < 2M and | £ [l < & || fullk < (,k M)/~/A. Therefore, with confidence1 §,
there holds

~ A’ M 1 2«M
I~ il < 5= log —+m(l+,/8log>

Finally, we apply Theorem 5. For eaghe X™, there holds with confidence-15,

| fza — frallk < (x/_+,/802log —i—:Mlog) (8.4)

Hereo? = Zi:l%- Apply the Bernstein inequality

Prok: 1y Y—EE)>e} <e me*
exm ;;sm— & >ep < Xp{‘z(38/3+az<g»}

to the random variablé(x) = [, (y — f,(x))?dp(y|x). It satisfies 0< & < 4M?, E(§) = 0%(p), and
0?(§) <AM?0?(p). Also, E(§) = o%(p) and(1/m) Y11 £(x;) = (1/m) Y I, o.2. Solving the quadratic
equation for the probability bound equaldpwe see that

8M2log(1/s) N \/8M202(p) log(1/5) ]

m

1
Prolcxm § — 2 <o?
brex [mZ"xi a?(p) +

i=1

>1-54.
3m

m

Hence with confidence 4 §,

1 1\ /4
Vo2 < Vmao?(p)+ M 3Iogg + <8mM2c72(,0) log §>
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which is bounded by gmo?(p) + 2M,/310g(1/5). Together with (8.4), we see that with probability
1-25in Z™, we have the bound

2c\/o2(p) SkeM./log(l/é) 1
— f < 1 8log- ).
I fzr — fiallx NG + - ( +4/ 098>

Combining the above three bounds fof:; — fillx, | f» — fillx, and|| fz. — feullx, we know that
for 0 < § < 1/4, with confidence ¥ 48, || f,.. — fillx is bounded by

kM [20log(1/5) \/ 1 5/202(p)log(1/8) 4« log(1/6)
ﬁk{ Jm +34+3 8Iogg+ M + 3 }

kM 1 log(1/6) 3 5/202%(p) 4« [log(1/8)
g\/m Iogg{ZO\/ m +Iogz+6\/§+ M 3V }

But o2(p) < M?. So our conclusion follows. O

We are in a position to state our convergence rates in poffx and| - ||, norms.

Corallary 5. Let z be randomly drawn according tp satisfying|y| < M almost surely. Iff, is in the
range ofL g, then for any0 < § < 1, with confidencd — § we have

a\"3r1\s
I fo — follk <2| L f, ||2/3(40/ch095) (Z) (8.5)

o

form > (?||Lt £, 1 ,)/(360M log(4/8)), by takings. = (40« M log(4/8) /| L £,1l ,)%/3(1/m)Y/3; and

IAGEYE R
I o= Follo <2|LES, Hi/z(4OKM log 3) (;) (8.6)

for m > (IIL* f,115%)/(180(M log(4/8))*?), by taking = (40c M log(4/8) /L " £,1l,)"/*(1/m)™*.
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